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Consider IID random samples X1,X2, . . .Xn where Xi is a sample from the density function f (Xi|θ). We are
going to introduce a new way of choosing parameters called Maximum Likelihood Estimation (MLE). We
want to select that parameters (θ ) that make the observed data the most likely. Note that we are now using
notation that shows that the density of X depends on its parameters, θ .

First we define the likelihood of our data give parameters θ :

L(θ) =
n

∏
i=1

f (Xi|θ)

This is the probability of all of our data. It evaluates to a product because all Xi are independent. Now we
chose the value of θ that maximizes the likelihood function. Formally θ̂ = argmax

θ

L(θ).

A cool property of argmax is that since log is a monotone function, the argmax of a function is the same
as the argmax of the log of the function! That’s nice because logs make the math simpler. Instead of using
likelihood, you should instead use log likelihood: LL(θ ).

LL(θ) = log
n

∏
i=1

f (Xi|θ) =
n

∑
i=1

log f (Xi|θ)

To use a maximum likelihood estimator, first write the log likelihood of the data given your parameters. Then
chose the value of parameters that maximize the log likelihood function. Argmax can be computed in many
ways. Most require computing the first derivative of the function.

Bernoulli MLE Estimation

Consider IID random variables X1,X2, . . .Xn where Xi ∼ Ber(p). First we are going to write the PMF of a
Bernoulli in a crazy way: The probability mass function f (Xi|p) = pXi(1− p)1−Xi . Wow! Whats up with
that? First convince yourself that when Xi = 0 and Xi = 1 this returns the right probabilities. We write the
PMF this way because its derivable.

Now let’s do some MLE estimation:

L(θ) =
n

∏
i=1

pXi(1− p)1−Xi

LL(θ) =
n

∑
i=1

log pXi(1− p)1−Xi

=
n

∑
i=1

Xi(log p)+(1−Xi)log(1− p)

= Y log p+(n−Y )log(1− p) where Y =
n

∑
i=1

Xi

Great Scott! Now we simply need to chose the value of p that maximizes our log-likelihood. One way to do
that is to find the first derivative and set it equal to 0.

δLL(p)
δ p

= Y
1
p
+(n−Y )

−1
1− p

= 0

p̂ =
Y
n
=

∑
n
i=1 Xi

n

All that work and we get the same thing as method of moments and sample mean...



Normal MLE Estimation

Consider IID random variables X1,X2, . . .Xn where Xi ∼ N(µ,σ2).

L(θ) =
n

∏
i=1

f (Xi|µ,σ2)

=
n

∏
i=1

1√
2πσ

e−
(Xi−µ)2

2σ2

LL(θ) =
n

∑
i=1

log
1√

2πσ
e−

(Xi−µ)2

2σ2

=
n

∑
i=1

[
− log(

√
2πσ)− 1

2σ2 (Xi−µ)2
]

If we chose the values of µ̂ and σ̂2 that maximize likelihood, we get:µ̂ = 1
n ∑

n
i=1 Xi and σ̂2 = 1

n ∑
n
i=1(Xi− µ̂)2.

Linear Transform Plus Noise

Assume that Y = θX +Z where Z ∼ N(0,σ2) and X is an unknown distribution. The equations imply that
Y |X ∼N(θX ,σ2). Chose a value of θ that maximizes the probability of the data: (X1,Y1),(X2,Y2), . . .(Xn,Yn).

We approach this problem by finding a function for the log likelihood of the data given θ . Then we find
the value of θ that maximizes the log likelihood function. To start, use the PDF of a Normal to express the
probability of Y |X ,θ :

f (Yi|Xi,θ) =
1√

2πσ
e−

(Yi−θXi)
2

2σ2

Now we are ready to write the likelihood function, then take its log to get the log likelihood function:

L(θ) =
n

∏
i=1

f (Yi,Xi|θ) Let’s break up this joint

=
n

∏
i=1

f (Yi|Xi,θ) f (Xi) f (Xi) is independent of θ

=
n

∏
i=1

1√
2πσ

e−
(Yi−θXi)

2

2σ2 f (Xi) Substitute in the definition of f (Yi|Xi)

LL(θ) = logL(θ)

= log
n

∏
i=1

1√
2πσ

e−
(Yi−θXi)

2

2σ2 f (Xi) Substitute in L(θ)

=
n

∑
i=1

log
1√

2πσ
e−

(Yi−θXi)
2

2σ2 +
n

∑
i=1

log f (Xi) Log of a product is the sum of logs

= n log
1√
2π
− 1

2σ2

n

∑
i=1

(Yi−θXi)
2 +

n

∑
i=1

log f (Xi)

Remove constant multipliers and terms that don’t include θ . We are left with trying to find a value of θ that
maximizes:

θ̂ = argmax
θ

−
m

∑
i=1

(Yi−θXi)
2

= argmin
θ

m

∑
i=1

(Yi−θXi)
2

This result says that the value of θ that makes the data most likely is one that minimizes the squared error of
predictions of Y . We will see in a few days that this is the basis for linear regression.
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